
©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab 1

Java Concurrency
Live(li)ness Lab

Dr Heinz M. Kabutz  
heinz@kabutz.net  

@heinzkabutz  
Last Updated 2017-01-31

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Liveness (labs 1-4)
– No deadlocks, no livelocks

l Liveliness (labs 5.1-5.5)
– Full CPU utilization, no contention

Live(li)ness

2

tinyurl.com/jfokus2017

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab 3

Avoiding Liveness
Hazards

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Fixing safety problems can cause liveness problems
– Don't indiscriminately sprinkle "synchronized" into your

code

Avoiding Liveness Hazards

4

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Lock-ordering deadlocks
– Typically when you lock two locks in different orders
– Requires global analysis to make sure your order is

consistent
• Lesson: only ever hold a single lock per thread!

Deadly Embrace

5

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l A deadly embrace amongst synchronized leaves no
way of recovery

– We have to restart the JVM

Thread Deadlocks in BLOCKED

6

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab 7

Lab 1: Deadlock
Resolution by Global

Ordering

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Classic problem is that of the "dining philosophers"
– We changed that to the "drinking philosophers"

• That is where the word "symposium" comes from
– sym - together, such as "symphony"
– poto - drink

• Ancient Greek philosophers used to get together to drink & think

l In our example, a philosopher needs two glasses to drink
– First he takes the right one, then the left one
– When he finishes drinking, he returns them and carries on

thinking

Lab 1: Deadlock resolution by global
ordering

8

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Our philosopher needs two glasses to drink
– First he takes the right one, then the left one
– When he’s done, he returns the left and then the right
– returns them and carries on thinking

Our Drinking Philosophers

9

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Table is ready, all philosophers are
thinking

10

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 wants to drink, takes
right cup

11

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 is now drinking with
both cups

12

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 wants to drink, takes
right cup

13

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 is now drinking with
both cups

14

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l But he has to wait for  
Philosopher 3 to  
finish his  
drinking  
session

Philosopher 2 wants to drink, takes
right cup

15

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 finished drinking,
returns left cup

16

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

1

5

4 3

2

Philosopher 3 returns right cup

17

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 is now drinking with
both cups

18

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l The standard rule is that every philosopher first
picks up the right cup, then the left

– If all of the philosophers want to drink and they all pick up
the right cup, then they all are holding one cup but cannot
get the left cup

Drinking Philosophers in Limbo

19

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

A deadlock can easily happen with this
design

20

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 wants to drink, takes
right cup

21

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 wants to drink, takes
right cup

22

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 wants to drink, takes
right cup

23

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 wants to drink, takes
right cup

24

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 wants to drink, takes
right cup

25

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l All the philosophers  
are waiting for their  
left cups, 
but they  
will never  
become  
available

Deadlock!

26

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l If all philosophers hold one cup, we deadlock
– In our solution, we have to prevent that from happening

Global order with boozing
philosophers

27

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l We can solve the deadlock with the "dining
philosophers" by requiring that locks are always
acquired in a set order

– For example, we can make a rule that philosophers always
first take the cup with the largest number
• If it is not available, we block until it becomes available

– And return the cup with the lowest number first

fixed order of lock acquisition

28

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l We start with all the  
philosophers thinking

Global Lock ordering

29

1

25

4 3
4

3

21

5

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Cup 5 has higher  
number

– Remember our rule!

Philosopher 5 takes cup 5

30

1

25

4 3
4

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Must take the cup with 
the higher number  
first

– In this case  
cup 2

Philosopher 1 takes cup 2

31

1

25

4 3
4

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 takes cup 3

32

1

25

4 3
4

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Note that philosopher 4  
is prevented from  
holding one cup

Philosopher 3 takes cup 4

33

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 takes cup 1 - Drinking

34

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Cups are returned in the  
opposite order to what  
they are acquired

Philosopher 1 returns Cup 1

35

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 takes cup 1 - Drinking

36

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 returns cup 1

37

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 returns cup 2

38

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 takes cup 2 - Drinking

39

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 returns cup 5

40

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 takes cup 5

41

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 returns cup 2

42

1

25

4 34

2

5

1

3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 returns cup 3

43

1

25

4 4

5

1 2

3

3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 takes cup 3 - Drinking

44

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Returns cup 3

45

1

25

4 3

2

5

1

3

4

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Returns cup 4

46

1

25

3

2

5

1

4

4

3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 takes cup 4 - Drinking

47

1

25

4 34

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Returns cup 4

48

1

25

4 3

3

21

4
5

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Deadlock free!

Philosopher 4 Returns cup 5

49

1

25

4 3
4

3

2

5

1

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Impossible for all philosophers to hold one cup

Deadlock is avoided

50

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l We have command line tools
– jps

• shows your Java process ids
– jstack -l pid

• shows what your JVM is currently doing
– Tools are in your jdk/bin directory

Tools jstack and jps

51

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab

Lab 1 Exercise

52

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Define a global order on the locks
1. Run eu.javaspecialists.deadlock.lab1.Main
2. Make the Krasi object implement Comparable
3. Lock first on bigger, than on smaller Krasi
4. Verify that the deadlock has now disappeared

Lab1 - Save our philosophers

53

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab

Lab 2: Deadlock
resolution by tryLock

Avoiding Liveness Hazards

54

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Same problem as in Lab 1
– But our solution will be different

l Instead of a global order on the locks
– We lock the first lock
– We then try to lock the second lock

• If we can lock it, we start drinking
• If we cannot, we back out completely and try again

– What about starvation or livelock?

Lab 2: Deadlock resolution by tryLock

55

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l The Lock interface offers different ways of locking:
– Unconditional, polled, timed and interruptible

l Lock implementations must have same memory-visibility
semantics as intrinsic locks (synchronized)

Lock and ReentrantLock

56

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long timeout, TimeUnit unit)
 throws InterruptedException;
 void unlock();
 Condition newCondition();
}

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Like synchronized, it offers reentrant locking
semantics

l Also, we can interrupt threads that are waiting for
locks

– Actually, the ReentrantLock never causes the thread to be
BLOCKED, but always WAITING

– If we try to acquire a lock unconditionally, interrupting the
thread will simply go back into the WAITING state
• Once the lock has been granted, the thread interrupts itself

ReentrantLock Implementation

57

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l We have to call unlock() in a finally block
– Every time, without exception
– There are FindBugs detectors that will look for forgotten

"unlocks"

Using the explicit lock

58

private final Lock lock = new ReentrantLock();
public void update() {
 lock.lock(); // this should be before try
 try {
 // update object state
 // catch exceptions and restore
 // invariants if necessary
 } finally {
 lock.unlock();
 }
}

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Instead of unconditional lock, we can tryLock()

Polled lock acquisition

59

if (lock.tryLock()) {
 try {
 balance = balance + amount;
 } finally {
 lock.unlock();
 }
} else {
 // alternative path
}

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Deadlocks happen when we lock multiple locks in
different orders

l We can avoid this by using tryLock()
– If we do not get lock, sleep for a random time and then try

again
– Must release all held locks, or our deadlocks become

livelocks

l This is possible with synchronized, see my newsletter
– http://www.javaspecialists.eu/archive/Issue194.html

Using try-Lock to avoid deadlocks

60

public void drink() {
 while (true) {
 left.lock();
 try {
 if (right.tryLock()) {
 try {
 // now we can finally drink and then return
 return;
 } finally {
 right.unlock();
 }
 }
 } finally {
 left.unlock();
 }
 }
}

61Java Concurrency Live(li)ness Lab

Using Trylock() To Avoid Deadlocks ©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Deadlock is prevented in this design

62

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 wants to drink, takes
right cup

63

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 wants to drink, takes
right cup

64

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 wants to drink, takes
right cup

65

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 wants to drink, takes
right cup

66

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 wants to drink, takes
right cup

67

1

25

4 3

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 tries to lock left, not
available

68

1

25

4 3

X

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Now Philosopher 3 can 
drink

Philosopher 4 Unlocks right again

69

1

25

4 3

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab

Lab 2 Exercise
Deadlock resolution with tryLock()

70

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Run Main class to trigger deadlock
– Capture a stack trace with jstack -l pid
– Use Lock.tryLock() to avoid blocking on the inner lock

• lock the right
• tryLock the left

– if success, then drink and unlock both
– otherwise, unlock right only and retry

– Verify that the deadlock has now disappeared

Lab2: Solving Deadlock with tryLock()

71

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab

Lab 3: Resource
Deadlock

Avoiding Liveness Hazards

72

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Problem: threads are blocked waiting for a finite
resource that never becomes available

l Examples:
– Resources not being released after use

• Running out of threads
• Java Semaphores not being released

– JDBC transactions getting stuck
– Bounded queues or thread pools getting jammed up

Lab 3: Resource Deadlock

73

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Does not show up as a Java thread deadlock

l Problem thread could be in any state: RUNNABLE,
WAITING, BLOCKED, TIMED_WAITING

Challenge

74

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l If you can reproduce the resource deadlock
– Take a thread dump shortly before the deadlock
– Take another dump after the deadlock
– Compare the two dumps

l If you are already deadlocked
– Take a few thread dumps
– Look for threads that don’t move, but should

How to solve resource deadlocks

75

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab

Lab 3 Exercise
Resource Deadlock

76

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Start our modified Java2Demo
– Dump threads with jstack -l
– Use Java2Demo for a while 

until it deadlocks
– Get another thread dump and  

compare to the first one
• This should show you where  

the problem is inside your code
– Fix the problem and verify that it has been solved

Lab3 Resource Deadlock

77

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Goal: Ensure that resources are released after use

l Diff between the two thread dumps using jps and jstack

– Fault is probably in our classes, rather than JDK

Lab3 Exercise solution Explanation

78

< at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
< at java.awt.EventQueue.getNextEvent(EventQueue.java:531)
< at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:213)

> at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:834)
> at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:994)
> at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1303)
> at java.util.concurrent.Semaphore.acquire(Semaphore.java:317)
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryManager.gc(MemoryManager.java:56)
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryMonitor$Surface.paint(MemoryMonitor.java:153)

/**
 * Only allow a maximum of 30 threads to call System.gc() at a time.
 */
public class MemoryManager extends Semaphore {
 private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

 public MemoryManager() {
 super(MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS);
 }

 public void gc() {
 try {
 acquire();
 try {
 System.gc();
 } finally {
 System.out.println("System.gc() called");
 release();
 }
 } catch (Exception ex) {
 // ignore the InterruptedException
 }
 }
}

79Java Concurrency Live(li)ness Lab

What Is Wrong With This Code? ©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved

Calling System.gc() is baddd (but not the problem)

Empty catch block hides problem

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab

Lab 4: Combining Your
Skills

Avoiding Liveness Hazards

80

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Problem: try to solve lab 4 using the skills learned

l Be careful - it is not as easy as it looks :-)

Lab 4: Combining your skills

81

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab

Lab 5: Speeding Up
Fibonacci

82

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Number sequence named after Leonardo of Pisa
– F0 = 0
– F1 = 1
– Fn = Fn-1 + Fn-2

l Thus the next number is  
equal to the sum of the  
two previous numbers

– e.g. 0, 1, 1, 2, 3, 5, 8, 13, 21, …

l The numbers get large very quickly

Lab 5: Speeding Up Fibonacci

83

8

13
21

2 3

5

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Taking our recursive definition
– F0 = 0, F1 = 1
– Fn = Fn-1 + Fn-2

l Our first attempt writes a basic recursive function

l But this has exponential time complexity
– f(n+10) is 1000 slower than f(n)

Exponential Algorithm

84

public long f(int n) {
 if (n <= 1) return n;
 return f(n-1) + f(n-2);
}

8

13
21

2 3

5

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Instead of a recursive method, we could use iteration:

l This algorithm has linear time complexity
– Solved f(1_000_000_000) in 1.7 seconds

• However, the numbers overflow so the result is incorrect
• We can use BigInteger, but its add() is also linear, so time is quadratic
• We need a better algorithm

Linear Algorithm

85

public static long f(int n) {
 long n0 = 0, n1 = 1;
 for (int i = 0; i < n; i++) {
 long temp = n1;
 n1 = n1 + n0;
 n0 = temp;
 }
 return n0;
} 8

13
21

2 3

5

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Dijkstra noted the following formula for Fibonacci
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

l Logarithmic time complexity and can be parallelized
– Java 8 uses better BigInteger multiply() algorithms

• Karatsuba complexity is O(n1.585)
• 3-way Toom Cook complexity is O(n1.465)
• Previous versions of Java had complexity O(n2)
• Single-threaded - we’ll fix that in Lab 5.3

3rd Attempt Dijkstra's Sum of Squares

86

8

13
21

2 3

5

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Implement this algorithm using BigInteger
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

l Run all tests in FibonacciTest and record the times

l Do it yourself - no cheating with Google!

Lab 5.1: Dijkstra’s Sum of squares

87

8

13
21

2 3

5

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l We can parallelize by using common Fork/Join Pool
– Next we fork() the 1st task, do the 2nd and then join 1st

Lab 5.2: Parallelize your algorithm

88

ForkJoinTask<BigInteger> f0_task = new RecursiveTask<BigInteger>() { 
 protected BigInteger compute() { 
 return f(half - 1);  
 } 
}.fork(); 
BigInteger f1 = f(half); 
BigInteger f0 = f0_task.join();

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Using principles from lab 5.2, parallelize methods in
eu.javaspecialists.performance.math.BigInteger

– multiplyToomCook3()
– squareToomCook3()

l These would probably not reach the threshold, so
we won’t parallelize them:

– multiplyKaratsuba()
– squareKaratsuba()

Lab 5.3: Parallelize BigInteger

89

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Dijkstra's Sum of Squares needs to work out some
values several times. Cache results to avoid this.

l Make sure you implement a “reserved caching
scheme” where if one thread says he wants to
calculate some value, others would wait

– e.g. have a special BigInteger that signifies RESERVED
• First thing a task would do is check if map contains that
• If it doesn’t, it puts it in and thus reserves it
• If it does, it waits until the task is done and uses that value

Lab 5.4: Cache Results

90

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l ForkJoinPool is configured with desired parallelism
– Number of active threads
– ForkJoinPool mostly used with CPU intensive tasks

l If one of the FJ Threads has to block, a new thread
can be started to take its place

– This is done with the ManagedBlocker

l Change your cache to use ManagedBlocker to keep
parallelism high

Lab 5.5: ManagedBlocker

91

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab

Wrap Up
Avoiding Liveness Hazards

92

Java Concurrency Live(li)ness Lab
©

 2012-2017 H
einz K

abutz, A
ll R

ights R
eserved

l Concurrency is difficult, but good  
tools and techniques solve  
problems

l These are just a few that we use

l For more, sign up to
– The Java Specialists' Newsletter

• tinyurl.com/jfokus2017
• Sign up before Feb 10th 2017 and enter a lucky draw

Conclusion on Live(li)ness

93

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Java Concurrency Live(li)ness Lab

Finding and Solving
Java Deadlocks

Dr Heinz M. Kabutz  
heinz@kabutz.net  

tinyurl.com/jfokus2017

94

